

openQRM bei der DB Systel GmbH

DB Systel

Holger Koch

holger.koch@deutschebahn.com

Berlin, 22.05.2013

- 1. Vorstellung
- 2. Einführung
- 3. Portfolio Small Solutions & DB SERVERS
- 4. Blick in die Zukunft
- 5. Zusammenfassung/Fragen

- Vorstellung
- 2. Einführung
- 3. Portfolio Small Solutions & DB SERVERS
- 4. Blick in die Zukunft
- 5. Zusammenfassung/Fragen

Der Vortragende

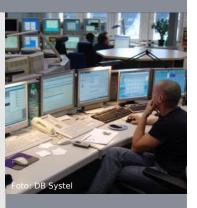
Über mich:

- Holger Koch
- Mitarbeiter DB Systel "zentrale Systemtechnik"
- Meine Aufgabengebiete im Bereich der "zentralen Systemtechnik"
 - Automatisierung
 - Monitoring
 - Förderung des Einsatzes von Open Source Software und Techniken

Daten & Fakten

Wir sind:

□ 3.100 Mitarbeiter an den drei Standorten Frankfurt/Main, Berlin und Erfurt


Wir betreiben:

- 2 Rechenzentren mit über 3.300 Servern
- Datennetz mit rund 340.000 IP-Anschlüssen von DSL bis Breitband-Glasfaser
- Rund 500 produktive IT-Verfahren
- 1,5 Petabyte Plattenspeicher / 4,5 Petabyte Backup-Kapazität
- bundesweit das digitale Funknetz der Bahn (GSM-R)

Wir betreuen bei der Bahn:

- 80.000 Nutzer des Bürokommunikationssystems der Bahn
- 92.000 VoIP-Anschlüsse

(Stand: Juni 2012)

Die Deutsche Bahn AG - Daten und Fakten

Geschäftsfelder in Zahlen (Stand 2012)

Personenverkehr

- 2,7 Milliarden Reisende mit Bahn und Bus pro Jahr
- 26.000 Personenzüge pro Tag
- 1 1mal um die Welt fährt jeder ICE in Deutschland umgerechnet pro Monat

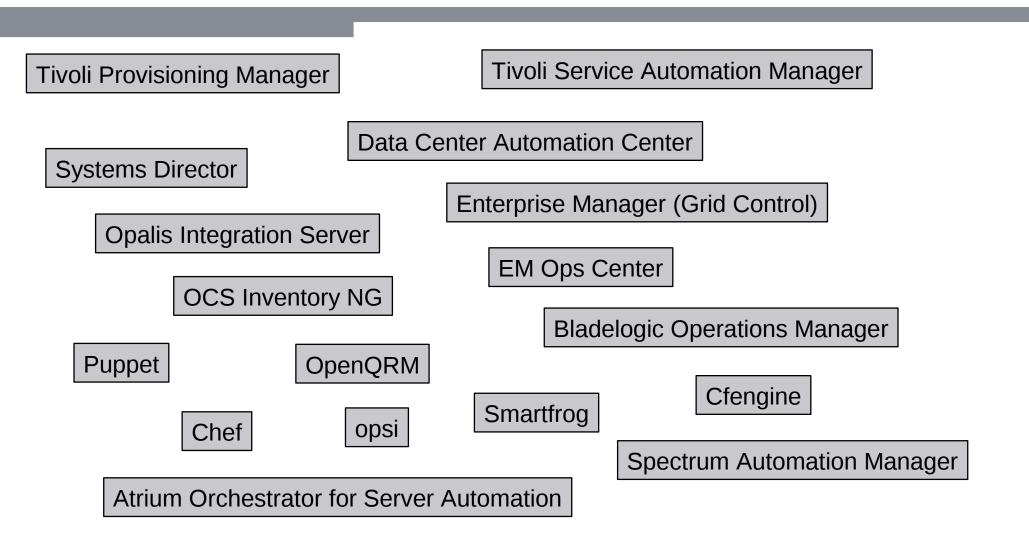
Netze

- 5.700 Bahnhöfe
- 33.600 km Streckennetz 3 mal so lang wie die deutschen Autobahnen
- 72.000 Weichen/Kreuzungen
- 5. größter Stromversorger in Deutschland

Transport & Logistik

- 412 Millionen Tonnen beförderte Güter auf der Schiene pro Jahr
- 1,2 Million Tonnen Luftfrachtvolumen pro Jahr
- 1,6 Millionen TEU¹ Seefrachtvolumen pro Jahr
- 96 Millionen Sendungen im europäischen Landverkehr pro Jahr
- Über 5 Millionen Quadratmeter Lagerfläche weltweit

- 1. Vorstellung
- 2. Einführung
- 3. Portfolio Small Solutions & DB SERVERS
- 4. Blick in die Zukunft
- 5. Zusammenfassung/Fragen


Wie kam openQRM zur DB?

- 01/2010 Abkündigung von N1sps durch die Firma Sun Suche ergab eine Liste von 30 Alternativprodukten
- 06/2010 Prototyp von openQRM aufgesetzt, aber die Zeit war noch nicht reif
- 09/2011 Vortrag von Matthias Rechenburg auf dem OSW das DB Management gab die Evaluierung in Auftrag
- 06/2012 erste openQRM basierte Wolke verwendbar

Wie kam openQRM zur DB?

Wie kam openQRM zur DB?

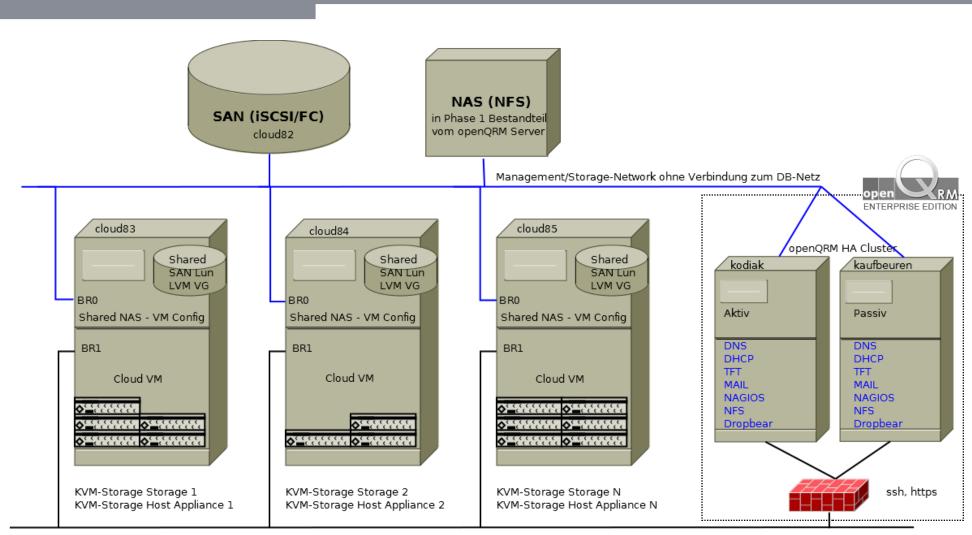
- 01/2010 Abkündigung von N1sps durch die Firma Sun Suche ergab eine Liste von 30 Alternativprodukten
- 06/2010 Prototyp von openQRM aufgesetzt, aber die Zeit war noch nicht reif
- 09/2011 Vortrag von Matthias Rechenburg auf dem OSW das DB Management gab die Evaluierung in Auftrag
- 06/2012 erste openQRM basierte Wolke verwendbar

Kurzvorstellung openQRM

- ursprünglich ab 2001 entwickelt von Qlusters in Java
- openQRM wurde 2006 unter einer Open Source Lizenz gestellt (MPL)
- 2008 stellte Qlusters den Geschäftsbetrieb ein
- Matthias Rechenburg führte openQRM als Community Projekt weiter
- kompletter Rewrite in PHP mit Version 4.0
- wurde unter der GPL Version 2 freigegeben
- seit 2010 Support durch die openQRM Enterprise GmbH
- seit Version 5.0 (08/2012) dual-lizensiert als freie Community- und kommerzielle Enterprise Edition mit erweiterten Funktionen erhältlich

Kurzvorstellung openQRM (technisch)

- vollautomatisches Deployment von Serversystemen, Service-Hochverfügbarkeit, Applikationskonfiguration und Power-Management
- Unterstützung aller wichtigen Virtualization- und Storagetechnologien
- Transparente P2V, V2P und V2V Migration
- N-to-1 and N-to-0 Fail-over
- API zur Integration in eigene Geschäftsprozesse
- Verwaltung mehrere openQRM Installationen mit Cloud Zones


DB Systel Anforderungen an openQRM

- sehr schnelle on Demand Bereitstellung
- Selfservice Portal
- Kompatibilität zur Premium Plattform, sowohl Betriebssystem als auch Middleware Komponenten
- Einfaches Verrechnungsmodell

Technische Realisierung

Public Network 1 - im Netzwerk der DB erreichbar

openQRM Admin Web Interface, Selfservice Portal für Cloud Portal/Zones, Services

Aufgabenstellung: Installation

von openQRM empfohlener Installationsweg:

apt-get install subversion make svn co https://openqrm.svn.sourceforge.net/svnroot/openqrm openqrm cd openqrm/trunc/src make&&make install&&make start

- Server haben keinen Zugang ins Internet
- Server haben keinen Compiler
- Plattform unterstützt nur Redhat und SLES, openQRM präferiert Ubuntu
- Viele Abhängigkeiten mussten manuell aufgelöst werden
- für effizienten Support, direkter remote Zugang zum openQRM Server notwendig

Aufgabenstellung: Installation

Lösungen:

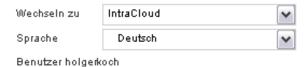
- openQRM Server-Installation über lokales Cache-Verzeichnis (vorab herunter geladene Software und Dependencies)
- seit openQRM Version 5.0.2 gibt es Packages für Debian/Ubuntu, SuSE/SLES, Redhat/Centos
- möglich: Bereitstellung der openQRM Pakete aus Package-Repository im DB Netz
- Remote-Support Workflow über Vier-Augen-Screensharing zusammen mit DB Mitarbeiter

openQRM betreibt und konfiguriert eigenen DNS Server

- bei der DB darf ausschließlich Communication Backbone DNS Server betreiben
- obwohl eigene Zone, keine forwarding Funkion erlaubt
- Lösung: dynamisches Konfigurieren der offiziellen DNS Server mittels nsupdate

```
$openqrm_server->send_command($OPENQRM_SERVER_BASE_DIR.
"/openqrm/nsupdate-hook/bin/nsupdate-hook.sh insert ".$appliance->name." ".$appliance_external_ip);
```

- Dank einfacher Skriptsprachen (PHP, Shellskript) leicht anpassbar
- ACHTUNG: Alle Änderungen müssen gut dokumentiert und bei Updates von openQRM wieder vorgenommen werden



- Pflege von lokalen Usern und Umsetzung der Passwortrichtlinie der DB sehr aufwändig. Aber openQRM unterstützt REMOTE_USER des Apachen, dadurch sehr einfach Anbindung an Jasig CAS möglich. Automatisches Anlegen der User beim ersten Zugriff, inkl. "Begrüßungsgeld" für erste Tests.
- Anpassung des Frontends "Cloudzones" an DB Styleguide
- eigenes "DB-Systel" Plugin für Frontendanpassungen
- Anpassung der Mailtemplates für Enduserkommunikation

Aufgabenstellung: Benutzerschnittstellen

Cloud Zonen

IntraCloud

Neu

Aufträge

Systeme

Account

Zonen

Transaktionen

Sie befinden sich in: IntraCloud - Die Intranet DB Cloud.

Status		
Name	IntraCloud	
Kontakt		
Land	DE	
Stadt	Erfurt	
Abteilung	IT	
Kommentar	Die Intranet DB Cloud.	
Domain	intracloud.db.de	
Hostnamen	Benutzerdefinierte Hostnamen	

Cloud Zonen

IntraCloud Neu Aufträge Systeme Account Zonen Transaktionen

Neues System erstellen in Cloud Zone IntraCloud

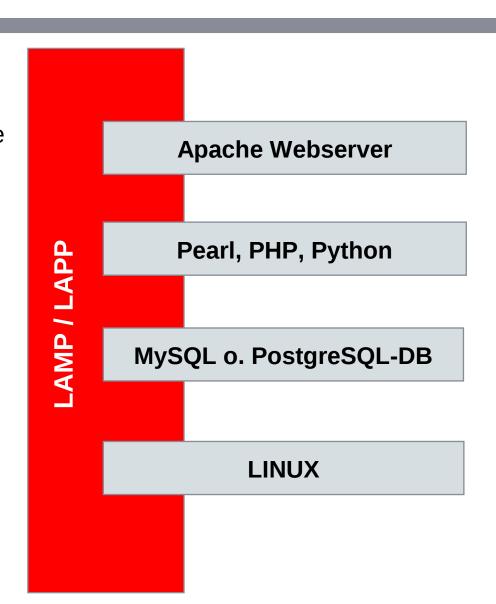
rofile orlage	Klein Sles11_default		
Applikations	Konfiguration		IP-Adress Konfiguration
ITPapache		^	Netzwerk 1
ITPphp		≡	Auto
ITPmysql			
ITPtomcat			
ITPjboss5			
ITPpostgreSQL		~	
			absenden abbrechen

- 1. Vorstellung
- 2. Einführung
- 3. Portfolio Small Solutions & DB SERVERS
- 4. Blick in die Zukunft
- 5. Zusammenfassung/Fragen

Portfolio Small Solutions & DB SERVERS

Anforderungen

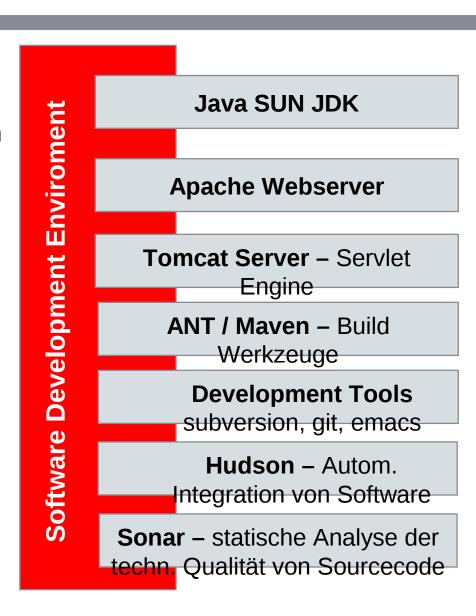
- ☐Standardisierter Linux-Server für jeden Azubi
- Unterstützung der Referenzarchitektur BahnNet
- kostenneutral für den Azubi
- volle Root-Rechte
- Neue Linuxdistribution schnell integrierbar
 - Z.B. RedHat o. Debian



Portfolio Small Solutions & DB SERVERS

Anforderungen

- Standardisierte, flexibel anpassbare Lösung, die in allen Projekten eingesetzt werden kann
- Unterstützung der Referenzarchitektur BahnNet und weiterer
- Schnelle Bereitstellung einer serverseitigen LAMP / LAPP Umgebung
- Lizenzkostenfrei
- Kosteneffiziente Lösung



Portfolio Small Solutions & DB SERVERS

Anforderungen seitens Entwicklung

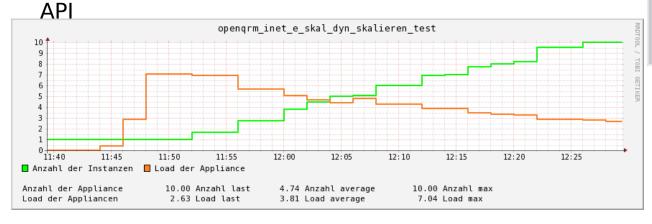
- Standardisierte, flexibel anpassbare Lösung, die in allen Projekten eingesetzt werden kann
- Unterstützung der Referenzarchitektur BahnNet und weiterer
- Bereitstellung einer Continuous Integration Umgebung für die kontinuierliche Überwachung der Softwarequalität im Projekt, bspw. durch automatisierte Unit-Tests oder Integrationstests
- Schnelle Bereitstellung einer serverseitigen Entwicklungsumgebung
- Schnell und einfach erweiterbar durch Entwickler

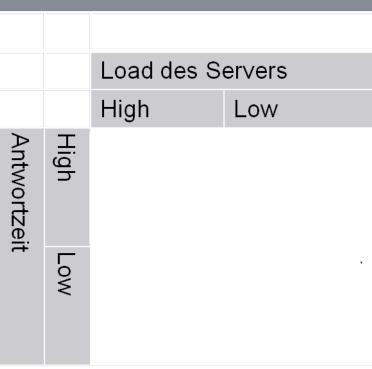
- 1. Vorstellung
- 2. Einführung
- 3. Portfolio Small Solutions & DB SERVERS
- 4. Blick in die Zukunft
- 5. Zusammenfassung/Fragen

Blick in die Zukunft

Ziel

- Neue Betriebsführungskonzepte
- Neue Verrechnungsmodelle (Selfservice, Abrechnung nach Verbrauch, App Store)
- Neue Rechtephilosophie (z.B. "Root for Customer", Dev meet Ops (Devops))
- Entwicklungsplattform DCS (Rapid-Prototyping, PoC-Plattform)


Automatisch skalierende Verfahren



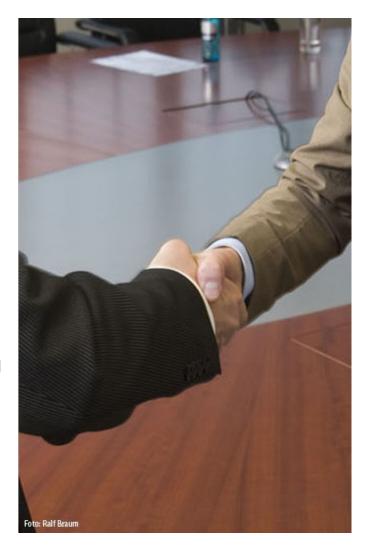
Voraussetzung

- Anwendung für dyn. Skalierung geeignet
- Loadbalancer
- Überwachung von mindestens 2 KPI Load des Servers und Antwortzeit der Applikation

Auf- und Abbau einer Appliance mit openQRM

- 1. Vorstellung
- 2. Nagios bei der Plattform UNIX/Linux
- 3. Technische Architektur Plattformmonitoring
- 4. Blick in die Zukunft
- 5. Zusammenfassung/Fragen

Zusammenfassung



openQRM

- Extrem flexible Plattform
- Durch Verwendung von Skriptsprachen sehr leicht anpassbar
- "Schwächen" bei Betriebsführbarkeit, "bricht" mit gelernten Prozessen
- Sehr guter Support vom Hersteller in Deutschland

Gewinn für die DB

- Ideale Plattform für:
 - schnelle, onDemand und temporäre Bereitstellung
 - Selfservice für Mitarbeiter/Kunden
 - dynamisches Skalieren von Applikationen
 - konzerninterne Abrechnung, Reporting

openQRM

Vielen Dank für Ihre Aufmerksamkeit!

Holger Koch

Tel. +49 361 300 5957 Mobil +49 151 628 45 902

T.SVP41

holger.koch@deutschebahn.com

DB Systel GmbH Schlachthofstraße 80 99098 Erfurt

www.dbsystel.de

Fragen oder Anregungen ... ?